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A B S T R A C T

Permafrost degradation in the Arctic is accelerating and affects northern communities, ecosystems, and
global soil carbon storage. However, the extent, distribution, and rates of permafrost degradation in the
pan-Arctic remain unknown, contributing to the challenges of mapping and monitoring it in a harsh and
remote environment. We applied feature extraction, deep learning, and crowdsourcing to an open-access, high-
resolution (2 m), and multi-temporal digital elevation models (i.e. ArcticDEM), to identify retrogressive thaw
slumps (RTSs), a dynamic form of permafrost degradation widespread across the Arctic. Specifically, we (1)
developed an automated pipeline to process approximately 200 TB of ArcticDEM data; (2) designed feature
extractors (pixel-wise elevation differences, polygons of elevation reductions, lines of narrow-steep slopes,
and RTS headwall lines) to identify slumps; (3) trained a super-efficient object detection algorithm based on
deep learning (YOLOv4) and used it to locate RTSs from composite imagery derived from the ArcticDEM; (4)
combined the extracted features and the bounding boxes output by YOLOv4 to obtain mapping results at a
manageable level; and (5) developed a crowdsourcing system and invited volunteers to validate and refine the
results. The final map included 2494 RTSs (actively expanding during ArcticDEM observation) across the Arctic.
The results also show that (1) it is necessary to combine the extracted features and deep learning to remove
many false positives in the scenario with limited training data, but large regions to map; (2) some hotspots
of RTSs need further and detailed investigation, including an RTS cluster in Greenland; (3) the crowdsourcing
system is useful for the validation of a large dataset, but responses to this work were limited, possibly because
RTSs are a quite specific topic that not many people are familiar with. The results likely miss many RTSs due
to the limitation in the method for identifying RTSs and uncertainties as well as short observation periods
of ArcticDEM at many locations. This study provides data and serves as a starting point to develop a global
inventory and better understand permafrost thaw in the pan-Arctic using very high resolution remote sensing.
1. Introduction

Increases in ground temperature across the circumpolar (Biskaborn
et al., 2019; Smith et al., 2022), are altering active layer thickness (Åk-
erman and Johansson, 2008; Pang et al., 2012), causing top-down thaw,
and intensifying thermokarst activity (Lewkowicz and Way, 2019).
Permafrost degradation is concerning because frozen soils contain a
significant amount of carbon (Tarnocai et al., 2009) which may be re-
leased to atmosphere under climate change (Zimov et al., 2006; Schuur
et al., 2015; Mu et al., 2020; Turetsky et al., 2020; Natali et al., 2021;
Miner et al., 2022). Moreover, abrupt thawing can cause hydrologic
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and geomorphic changes that impact northern communities and ecosys-
tems (Hjort et al., 2018, 2022; Teufel and Sushama, 2019; Schaefer
et al., 2020; Miner et al., 2021). Abrupt thawing can also produce
distinct landforms (Jorgenson, 2013) such as thermokarst lakes (e.g.,
Lin et al., 2010), retrogressive thaw slumps (e.g., Burn and Lewkowicz,
1990), melt ponds (e.g., Steedman et al., 2017), and thermo-erosion
gullies (e.g., Godin et al., 2014; Huang et al., 2018). Distributed across
the circumpolar, these landforms are challenging to map because they
are small and dynamic. Developing comprehensive inventories of these
features to better understand the impacts of permafrost degradation on
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the global climate requires innovative methods to rapidly process and
analyze high resolution data.

A retrogressive thaw slump (RTS) is a form of abrupt permafrost
thaw (e.g. Fig. 1), which consists of: (1) a nearly-vertical headwall that
retreats upslope as ground ice in the headwall melts, and (2) a scar
area where thawed materials are deposited (Burn and Friele, 1989;
Wang et al., 2009; Niu et al., 2016; Lewkowicz and Way, 2019). An
RTS typically has a depression with a cusp or horseshoe shaped scar
area visible on remote sensing imagery (e.g., Kokelj et al., 2009, 2017;
Ward Jones et al., 2019). In some locations, slump scars also can have
irregular or elongated shapes (e.g., Huang et al., 2021; Bernhard et al.,
2022b). In a well-vegetated region, removal of vegetation by an RTS
causes strong spectral differences between the RTS and its surroundings
on satellite imagery acquired in visible bands (e.g., Lacelle et al., 2015).
In Tibet and the high Arctic, where vegetation cover is low, an RTS is
quite similar to its surroundings on satellite imagery (e.g., Xia et al.,
2022; Ward Jones et al., 2019). In the past several decades, the area
and number of RTSs have significantly increased in several regions
including the Mackenzie Delta Region (Lantz and Kokelj, 2008), the
Beiluhe Region in Tibet (Luo et al., 2019), Banks Island (Lewkowicz
and Way, 2019), and the northern Taymyr Peninsula (Bernhard et al.,
2022b), but their spatial distribution for the entire permafrost region
is still unknown.

Many studies have used manual or automated methods to identify
and delineate RTSs from remote sensing imagery in different regions.
Manual digitization is the main approach to compiling RTS inventories
in many local regions including Tibet (e.g., Niu et al., 2016; Luo et al.,
2019, 2022) and the Arctic (e.g., Ramage et al., 2017; Lewkowicz and
Way, 2019), but it is labor intensive and time-consuming. Automated
or semi-automated techniques utilizing Landsat image stacks (Brooker
et al., 2014; Nitze et al., 2018; Lara et al., 2019), high-resolution satel-
lite imagery (Rudy et al., 2013), and digital elevation models (Bernhard
et al., 2020; van der Sluijs et al., 2022) have been explored to map
RTSs, but these approaches often miss small features or are typically
limited to local or regional sites.

In the past decade, deep learning has significantly improved the
state-of-the-art in image processing and is widely used in many ap-
plications (LeCun et al., 2015). Deep learning is a machine learning
technique built on neural networks and can automatically learn pattern
from data (Goodfellow et al., 2016). Before deep learning, people
had to manually design feature extractors and obtain features (termed
as extracted features hereafter) such as edges and textures from the
image itself using various algorithms in image processing and computer
vision. These extracted features require people have strong skills and
domain knowledge to design feature extractors for specific tasks, while
deep learning does not have this requirement. Since Krizhevsky et al.
(2012) published a milestone work, deep learning has quickly domi-
nated data processing in many fields. Deep learning approaches have
been used to map RTSs, but the transferability of these methods when
scaling up from local to regional or continental extents is currently
unsatisfactory.

Several recent studies have used deep learning to map RTSs (Huang
et al., 2020, 2022; Nitze et al., 2021) and quantify their evolution
(Huang and Liu, 2020; Huang et al., 2021). Huang et al. (2020)
automatically delineated 220 RTSs in a homogeneous region in Tibet
using a trained model, but achieved a slightly lower performance in a
new region where training data was not available. Nitze et al. (2021)
and Huang et al. (2022) conducted experiments using training data
from several regions and found that the transferability of trained mod-
els was hard to improve even using data augmentation and generative
adversarial networks to increase the volume and diversity of training
data. The challenge of transferability is related to the fact that the
deep learning approaches used in these studies are based on supervised
learning, which requires a significant amount of training data from
every possible scenario. A neural network trained with sufficient data
302

should have perfect transferability (Zhang et al., 2021), but it is unclear
how much training data is required to accurately map RTSs at the
pan-Arctic scale.

Currently, a lack of training data and very high-resolution & publi-
cally available satellite imagery hinders efforts to build a comprehen-
sive inventory of RTSs in the pan-Arctic. Training data with sufficient
volume and diversity is necessary for training a deep learning model
to map RTSs in large scales. Many small RTSs are only visible in high-
resolution (<5 m) satellite imagery, which is not available to the public
or general research communities.

Our objectives are to: (1) generate features that represent temporal
and spatial changes of topography in the entire ArcticDEM domain,
excepting the Greenland Ice Sheet, (2) locate RTSs (actively expand-
ing during ArcticDEM observation) using a combination of extracted
features and deep learning, and (3) develop a crowdsourcing system
and invite effort from scientific communities to refine the automated
mapping results. Specifically, we use the ArcticDEM (Section 2), an
open-access, multi-temporal, and high resolution (2 m) digital elevation
models (DEM). We generate extracted features including: polygons of
elevation reductions, line features representing abrupt slope changes,
and time series of RTS headwall movements. We show that the com-
bination of the extracted features and deep learning is necessary to
overcome the challenge of limited training data. Due to the challenges
of processing big data and mapping RTSs at a pan-Arctic scale, we focus
on the feasibility of this project and try to identify barriers hindering
the effort of compiling a complete RTS inventory. We also develop
an automated pipeline to process this huge dataset (∼200 TB) with
limited storage quota (10 TB) on a supercomputer. Our work is the
first attempt to inventory RTSs at a pan-Arctic scale and provides an
important dataset to advance the monitoring of permafrost thaw across
the Arctic.

2. ArcticDEM

The ArcticDEM is a digital surface model of the Arctic gener-
ated using optical stereo imagery acquired by Worldview-1, 2, 3, and
GeoEye-1 satellites (Morin et al., 2016; Porter et al., 2018) and the
Surface Extraction from TIN-based Search-space Minimization (SETSM)
algorithm (Noh and Howat, 2015, 2017). This study uses Release 7
issued by the Polar Geospatial Center (PGC) in 2018 and the corre-
sponding mosaic and strip products at a spatial resolution of two meters
(arcticdem.org) and vertical precision of better than 0.5 m (Morin
et al., 2016). The ArcticDEM covers all land area north of 60 ◦N, and
southern Greenland, southern Alaska, and the Kamchatka Peninsula
in Russia (Fig. 2a) and has various numbers (1–10+) of observations
at different locations (Fig. 2b). The ArcticDEM spans the period from
2008 to 2017 and includes acquisition from all months with the most
observations in April (Figs. 3a and b). The ArcticDEM is a digital
surface model that represents the height of the Earth’s surface including
vegetation, snow, and buildings etc. According to the PGC website,
the strip files correspond to the overlapping area of stereopair image
swaths, with 16–18 km width and 110–120 km length; while the mosaic
files are compiled from the best quality strip files and distributed in
50 km × 50 km sub-tiles. The height in all the products is referenced to
the WGS84 ellipsoid and in the map projection of Polar Stereographic
North (EPSG:3413). Co-registration using IceSAT altimetry data is ap-
plied to mosaic files to improve absolute accuracy, but not to strip
files, which only provide offsets in x, y, and z directions (termed as
xyz offsets) in the metadata. The ArcticDEM is publically available on
the PGC website and Google Earth Engine (earthengine.google.com).
The ArcticDEM can capture the shape, extent, and expansion of an
RTS as exampled by Fig. 4.The ArcticDEM has been widely used in
many studies such as measuring lava flows (Dai and Howat, 2017) and

estimating river surface elevation (Dai et al., 2018).

https://arcticdem.org
https://earthengine.google.com
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Fig. 1. Ground photo of a retrogressive thaw slump in the Hornaday River Uplands, Northwest Territories, Canada (Photo: Trevor Lantz).

Fig. 2. The coverage and density of the ArcticDEM. (a) The black polygons outline the coverage of the ArcticDEM in the Arctic with permafrost extent (Obu et al., 2019) in the
background. (b) The density of the ArcticDEM indicates the number of multiple temporal digital elevation models (DEM) available at each location.

Fig. 3. Histograms of months (a) and years (b) of the ArcticDEM.
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Fig. 4. Examples of a retrogressive thaw slump (RTS) in hillshades derived from DEMs in 2010, 2011, 2013, 2014, 2015, and 2017. The geometric center of this RTS is 68.882
◦N, 150.959 ◦W. The red arrow indicates the RTS headwall, which moves upslope (North). (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
3. Methods

Our workflow included an automated pipeline to process the Arc-
ticDEM data and perform feature extraction, a deep-learning-based
object detection algorithm (i.e. YOLOv4), and implement a web-based
crowdsourcing system (Fig. 5). The pipeline used two workstations and
a supercomputer for downloading the ArcticDEM data and running
feature extraction including elevation differencing, segmentation of el-
evation differences, extracting lines of narrow-steep slopes, identifying
RTS headwall lines, and producing composite images (Section 3.1).
The composite images were hillshades derived from the most recent
DEM, with lines of narrow-steep slopes on them. These composite
images were used as input images for locating RTSs using YOLOv4
(Section 3.2). We only kept YOLOv4 boxes (bounding boxes of objects
identified by YOLOv4) at locations where RTS were present in all
three features: polygons of elevation reductions, headwall lines, and
YOLOv4 boxes. After filtering, we used a crowdsourcing system to
validate/refine the filtered boxes and obtain bounding boxes of RTSs
in the Arctic (Section 3.3). We chose regions in Alaska and the western
Canadian Arctic and conducted some experiments to optimize the
parameters of feature extractors and a YOLOv4 model.

3.1. Automated pipeline for ArcticDEM processing and feature extraction

We developed an automated pipeline to process the ArcticDEM data
and conduct feature extraction by utilizing two workstations in our
lab and a supercomputer (www.colorado.edu/rc) on the campus of
the University of Colorado Boulder (CUBoulder) (Fig. 5). The pipeline
downloaded the ArcticDEM mosaic and strip files from the PGC website
(arcticdem.org), unpacked them, and uploaded them to the supercom-
puter for feature extraction. On the workstations, xyz offsets, derived
from co-registration based on IceSAT altimetry data, were applied
to strip files before uploading. Due to the limitation of storage on
our workstations (20 TB) and supercomputer (10 TB), the pipeline
used a data management strategy to overcome this issue (detailed in
Section 3.1.1). Communication between workstations and the super-
computer was through json files containing information such as a subset
id and job statuses. The pipeline also monitored failed jobs on the
supercomputer, then re-ran them on workstations. The heterogeneous
nature of feature extraction in different grids caused varying demand
304
of CPU memory and computing time, which sometimes exceeded pre-
allocated resources requested from the supercomputer and led to job
failure.

3.1.1. Data preparation and management
The pipeline divided the entire ArcticDEM domain into many grids

(Fig. 6), grouped connected grids into subsets (Fig. 7), and took each
subset as a whole to download and prepare data. The entire domain
includes 58,667 grid cells, each of them is a basic unit for data process-
ing and has a size of 20 km × 20 km, which well fitted the allocated
resources of a computing job on the supercomputer. The pipeline
grouped connected grids to subsets by rasterizing grids into a raster file,
then using the region growing algorithm (Figs. 7 c and d). Each subset
contains a few to 200 grids, depending on how many connected grids
the algorithm could find. Because a strip or mosaic file overlaps several
grids (Figs. 7 a and b), and each location is covered by multiple strip
files (Fig. 2b), the pipeline treated downloading the ArcticDEM from
the PGC website (arcticdem.org) for a subset of grids as one task. We
did not directly use the ArcticDEM available on Google Earth Engine
because the platform does not have the algorithms needed for feature
extraction. Data preparation included downloading/unpacking strip
and mosaic files, applying xyz offsets to strip files using a tool published
by PGC (https://github.com/PolarGeospatialCenter/pgcdemtools), and
uploading files to the supercomputer. The pipeline only downloaded
and prepared mosaic and strip files that covered a few subsets of grids
ahead of feature extraction due to the limitation of disk space on the
workstations and the supercomputer. Once feature extraction for all the
grids covered by a strip or mosaic file was complete, the corresponding
file would be deleted on all machines to release disk space.

Before feature extraction, the pipeline cropped strip and mosaic
files to the extent of each grid, applied masking data, and merged
strip files. After cropping, the pipeline applied masking data including
matchtag, DEM outlier, and surface water to strip files. Matchtag is a
raster file produced by SETSM (Section 2) and indicates that a pixel
is derived from a stereo match (1) or interpolation (0). We considered
the DEM value of a pixel in a strip file as an outlier if it was greater
than the corresponding DEM value in the mosaic file by 50 m or more.
We masked pixels in the strip files if their matchtag was 0 or were
considered as outliers. Because SETSM tended to produce inaccurate
or incorrect DEM values over surface water, we utilized a dataset of

http://www.colorado.edu/rc
https://arcticdem.org
https://arcticdem.org
https://github.com/PolarGeospatialCenter/pgcdemtools
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Fig. 5. The flowchart for identifying RTSs from the ArcticDEM using a combination of extracted features and deep learning (YOLOv4).
Fig. 6. Map of the study area showing grid system used for ArcticDEM processing. The entire ArcticDEM domain included 58,667 grid cells, each with a size of 20 km × 20 km.
global surface water (Pekel et al., 2016) to mask these pixels. After
masking, strip files with the same scene ID and acquisition date were
merged into one, and those acquired in the same year were also
stacked by putting the layer with the acquisition date closer to July
1st on top. The pipeline used the Geospatial Data Abstraction Library
(GDAL) and Python packages (Rasterio, GeoPandas, and Numpy) for
reading/writing, cropping, masking, and merging.

3.1.2. Producing and segmenting elevation differences
The pipeline calculated the DEM difference at each pixel as:

𝐷 = 𝐷𝐸𝑀𝑛 −𝐷𝐸𝑀𝑜 (1)

where 𝐷 is the elevation difference, and 𝐷𝐸𝑀𝑛 and 𝐷𝐸𝑀𝑜 are the most
recent and oldest elevations for each pixel, respectively. To save disk
space, rasters of elevation differences (e.g. Fig. 8a) were multiplied by
100 and saved to Int16, with a range from −327.68 m to 327.67 m. We
assumed that elevation difference in the Arctic derived from the Arctic-
DEM would not exceed this range. We did not use DEM co-registration
techniques based on the assumption of control surfaces (Nuth and Kääb,
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2011; Dai and Howat, 2017) to co-register multi-temporal DEMs before
differencing because the co-registration needs intensive computing and
may eliminate real signals due to snow cover or DEM uncertainties.

In the next step, the pipeline segmented a raster of elevation dif-
ference and obtained polygons representing regions of elevation reduc-
tions. It segmented a raster using the quick shift algorithm (Vedaldi and
Soatto, 2008), implemented in a open-source python package: scikit-
image (Van der Walt et al., 2014). The raster was normalized to 8 bit
(0–255) and tiled to many patches (around 1000 × 1000 pixels) to
facilitate the segmentation, overcome the limitation of CPU memory,
and leverage parallel computing resources. After segmentation, the
raster was divided into many homogeneous regions represented by
polygons (Fig. 8b). Some of these polygons had vertical or horizontal
edges due to tiling. The steps to obtain polygons of elevation reductions
included: (1) removing polygons whose area smaller than 120 m2 (30
pixels) or where the average elevation difference within the polygons
was greater than −2 m; (2) merging polygons that touch each other;
(3) removing polygons that matched one of the following criteria: (a)
larger than 1,000,000 m2 (250,000 pixels), (b) the relative elevation
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Fig. 7. Examples of ArcticDEM mosaic and strip files, and subsets containing connected grids. A mosaic (a) and strip (b) file covers several grids, respectively. (c) and (d) show
that connected grids are grouped into subsets with different colors using the region growing algorithm.
Fig. 8. An example of DEM differences and the corresponding segmented polygons. (a) is the result of DEM differencing, and red polygons in (b) are results after applying a
segmentation algorithm to (a). (c) shows a polygon representing a region of elevation reduction after processing polygons in (b). These sub-figures have the same geographic extent
and orientation as Fig. 4. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
differences are greater than −2 m, (c) had a large and narrow shape,
(d) contained more than 20 holes, (e) located on a slope steeper
than 20◦. In the step (2), we rasterized polygons into a binary raster
then converted this layer to polygons, which was more efficient than
checking if a polygon touched another polygon, and automatically
removed the artifact (i.e. vertical or horizontal edges in Fig. 8b) caused
by tiling. The relative elevation difference of a polygon was defined by

𝐸𝑟 = 𝐸𝑖𝑛 − 𝐸𝑠𝑢 (2)

where 𝐸𝑖𝑛 and 𝐸𝑠𝑢 is the average of elevation differences within a
polygon and its surroundings (a 20 m buffer zone), respectively. By
using the relative elevation difference, we assumed that the regions
surrounding an RTS are stable. This also minimized potential errors
caused by inaccurate DEM values in the ArcticDEM. A polygon of
an elevation reduction with a large area (>10,000 m2) and narrow
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shape (circularity < 0.1) tends to result from changes in snow cover,
vegetation, or positional errors of multi-temporal DEM data, instead of
the development of an RTS. The circularity of a polygon is defined as:
4𝜋𝑆
𝑃 2 (3)

where 𝑆 and 𝑃 is its area and perimeter, respectively. A polygon con-
taining too many holes indicates that the DEM derived from stereopair
images may contain errors and uncertainties. Since RTSs tend to occur
on gentle slopes, we set a slope threshold to remove polygons that
did not match this criterion, although the topography may already be
disturbed by slumping. The average of slope within a polygon was
calculated from the mosaic files of the ArcticDEM.

3.1.3. Delineating narrow-steep slopes
The pipeline delineated lines representing narrow and steep slopes

from the strip files in different years. This was useful for identifying RTS
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Fig. 9. Delineation of narrow-steep slopes from a DEM raster. (a)–(f) are a DEM raster, slope file, binarized slope, clear-binarized slope, medial axis, and final results of narrow-steep
of slope, respectively. The former file is the input of the latter one. These sub-figures have the same geographic extent and orientation as Fig. 4.
headwalls which cause abrupt changes in elevation. The steps in this
part of the workflow included: (1) converting a DEM raster (Fig. 9a)
to a slope file (Fig. 9b) using GDAL, (2) binarizing the slope raster
by assigning pixels with slope >20◦ as 1 (Fig. 9c), (3) removing big
(>50000 m2) or very small (<200 m2) regions (Fig. 9d), (4) extracting
medial axes from the remaining regions (Fig. 9e), and (5) obtaining
lines representing narrow and steep slopes (Fig. 9f). We did not apply
matchtag to strip files before the delineation because it generated
many invalid pixels similar to white noise that may have resulted in
failure of the delineation process. In step (3), we used the measure
module in a python package called scikit-image to group connected
pixels into regions and obtain their areas, and remove any regions
that were too big or small. We also used the morphology module in
scikit-image to extract medial axes and obtain many line segments with
one-pixel width. Subsequently, we converted medial axes to polygons
and removed some of them if: (1) their length was greater than 4000 m
or less than 30 m, (2) the maximum width of their medial axes was
greater than 80 m, (3) or they contained more than 10 holes. In step
(5), each pixel in the remaining medial axes would be considered as a
node of a graph, and we used a python package NetworkX (Hagberg
et al., 2008) to conduct graph analysis and obtain lines representing
narrow-steep slopes using the Dijkstra’s Method (Dijkstra et al., 1959),
which is a commonly used method to identify the shortest weighted
path in a graph from source to target locations.

3.1.4. Selecting headwall lines from narrow-steep slope lines
The pipeline used a statistical method by gradually expanding the

buffer zone of a line and counting other lines in its surroundings
(termed ripple statistics). The main idea is to check if a group of
narrow-steep slope lines follows the pattern of an RTS expansion, that
is, its headwall moves in one direction each year. We detailed the
calculation as follows.

We assumed that a line of narrow-steep slope is 𝐿𝑐 (e.g. the
red line in Fig. 10), a collection of lines in its surroundings is 𝐿:
{𝐿1, 𝐿2,… , 𝐿𝑗 ,… , 𝐿𝑚} (e.g. the black lines in Fig. 10), 𝐿𝑐 ∉ 𝐿, a
time array is 𝑇 ∶ {𝑌𝐿𝑐

}, a collection of potential headwall lines is
𝐻 ∶ {𝐿𝑐}, and a collection of the number of newly found lines within
the buffer zone of 𝐿𝑐 is 𝑆 ∶ {𝑠1, 𝑠2,… , 𝑠𝑖,… , 𝑠𝑛} (Fig. 10), where 𝑌𝐿𝑐
is the acquisition year of the original DEM (merged from the strip files
in the same year, see Section 3.1.1) for deriving 𝐿𝑐 . Two attributes
of 𝐿 : its length (|𝐿 |) and acquisition year (𝑌 ), were be used in
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𝑗 𝑗 𝐿𝑗
the following calculation. We gradually increased 𝑖 from 1 to 𝑛, for
each 𝑖, we calculated 𝑠𝑖 (initialized as 0) by following steps: (1) obtain
𝐵𝑖 = 𝐿𝑐 .𝑏𝑢𝑓𝑓𝑒𝑟(𝑖 × 𝛿); (2) for each 𝐿𝑗 ∈ 𝐿, if it is within 𝐵𝑖, then add
it to a collection 𝑀 ; (3) if 𝑀 is empty, then increase 𝑖 and go back to
(1), otherwise, for each 𝐿𝑘 ∈ 𝑀 , if |𝐿𝑐 | × 0.3 ⩽ |𝐿𝑘| ⩽ |𝐿𝑐 | × 3 and
𝑌𝐿𝑘

∉ 𝑇 , add 1 to 𝑠𝑖, append 𝑌𝐿𝑘
to 𝑇 as the last element, and append

𝐿𝑘 to 𝐻 as the last element; (4) for each 𝐿𝑘 ∈ 𝑀 , remove it from 𝐿,
then empty 𝑀 . We set 𝑛 = 50, 𝛿 = 2 m, and used a python package
shapely (shapely.readthedocs.io) for buffering and checking if a line is
within 𝐵𝑖.

The pipeline decided if 𝐿𝑐 is a headwall line based on variables
derived from 𝑆, 𝑇 , and 𝐻 . We assumed that 𝑂 ∶ {𝑂1, 𝑂2,… , 𝑂𝑑} is
the collection of geometric centers of lines in 𝐻 , 𝑑 is the total number
of lines in 𝐻 , and 𝑂1 to 𝑂𝑑 indicates how the headwall of an RTS moves
(the green arrows in Fig. 10). We calculated sinuosity of 𝑂 by:

𝑆𝑖𝑛 =
|𝑂1𝑂2| + |𝑂2𝑂3| +⋯ + |𝑂𝑑−1𝑂𝑑 |

|𝑂1𝑂𝑑 |
(4)

where |𝑂𝑎𝑂𝑏| is the length of the straight line connecting two geo-
metric centers 𝑂𝑎 and 𝑂𝑏, and 𝑎, 𝑏 ∈ (1, 𝑑). We assumed that 𝐴 ∶
{𝐴1, 𝐴2,… , 𝐴𝑧,… , 𝐴𝑑−1} is the collection of angles between 𝑂𝑎−1𝑂𝑎 and
𝑂𝑎𝑂𝑎+1, where 𝐴𝑧 ∈ [0◦, 180◦). We assumed 𝑟 is the number of non-
zero values in 𝑆. We considered 𝐿𝑐 a headwall line if all the criteria
were satisfied: (a) 𝑟 > 1; (b) the years in 𝑇 is monotonic increasing or
decreasing; and (c) 𝑆𝑖𝑛 < 2 and the minimum value of 𝐴 is greater than
90◦.

3.1.5. Producing composite imagery
The pipeline produced composite imagery (e.g. Figs. 11a and b) by

rasterizing lines of narrow-steep slopes (Section 3.1.3) with hillshades
derived from the most recent strip files. We did not apply the mask of
matchtag and global surface water to the strip files before converting
DEM to hillshades because we want to keep all information from the
ArcticDEM. The width of each line is one-pixel, and the lines derived
from later years would overwrite those from early years if they were at
the same locations. We assigned different colors for the lines in different
year as shown in Fig. 11c. We used these imagery as the input for
deep learning algorithms because we anticipate that locating RTSs from
composite imagery is more accurate and easier than from hillshades
only.

https://shapely.readthedocs.io
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Fig. 10. Illustration of the identification of a headwall line from lines of narrow-steep
slopes. The red and black lines are lines of narrow-steep slopes (Section 3.1.3), and
the red one is the line being checked if it is a headwall line. The blue curves are
boundaries of buffer polygons at different steps (1 to n). The green arrows indicate the
movement of headwall lines from 2010 to 2017. 𝑠1 to 𝑠𝑛 are counts of newly contained
lines by the buffer polygons at different steps. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

3.2. Identifying RTSs using YOLOv4 and extracted features

We used an object detection algorithm to locate RTSs on the com-
posite imagery in the ArcticDEM domain and obtain bounding boxes
of RTSs. Object detection is a category of computer vision algorithms
for locating objects in images or video and obtaining corresponding
bounding boxes and classes. The object detection algorithm we used
was YOLOv4 (Bochkovskiy et al., 2020), which is an improved version
of YOLO (Redmon et al., 2016). YOLO means ‘‘You Only Look Once’’
and is a super-efficient algorithm, comparing with other state-of-the-art
object detectors (Bochkovskiy et al., 2020), that allowed us to finish
the processing of a huge dataset for the entire region with limited
computing resources in a few days.

We trained a YOLOv4 model using training polygons drawn in
QGIS (www.qgis.org) and composite imagery. We used RTS locations
(points) published by Bernhard et al. (2022a) as guidance then de-
lineated 563 polygons (e.g. the dashed polygon in Fig. 11b) of RTSs
on these imagery and considered them as positive training polygons.
These RTS points were detected from TanDEM-X-derived DEM using
a change detection algorithm (Bernhard et al., 2020). By following
the practice in Huang et al. (2020), we also drew some negative
training polygons to reduce false positives when we originally focused
on Alaska and fine-tuned the YOLOv4 model. The positive polygons
represent RTS headwalls and parts of the slump scar, as we cannot
distinguish slump scars using hillshades. The number of positive train-
ing polygons is less than that of points published by Bernhard et al.
(2022a) because of the discrepancy between TanDEM-X and ArcticDEM
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observation period, which varies on location (Figs. 2b and 3). We
developed an automated routine that can covert training polygons and
the composite imagery into datasets for training YOLOv4. We used
a pre-trained model (https://github.com/AlexeyAB/darknet/releases/
download/darknet_yolo_v3_optimal/yolov4.conv.137) to initialize the
YOLOv4 model and trained it with the default settings in Bochkovskiy
et al. (2020), except that we set the number of classes to 1 because
we only had one class (i.e. RTS). We randomly divided the training
data into training (90%) and validation (10%) sets. The training loss
stabilized at around 0.34 after 4000 iterations, and mean Average
Precision (mAP) of the validation set was 85%, indicating a good
training performance. Due to the limitation of computing resources
and the large scale of data, we did not conduct various experiments
to optimize the YOLOv4 model for the entire ArcticDEM domain.

We used the trained model to locate rapid expanding RTSs in the
entire ArcticDEM domain from the composite imagery and obtained
bounding boxes and the corresponding confidence. The composite im-
agery was split into many patches, each with size of 320 × 320 pixels
and an overlap of 80 pixels with adjacent ones. We set a threshold of 0.5
for non-maximum suppression, meaning that multiple bounding boxes
have 50% overlap with each other would be removed and only that
with the maximum confidence would be kept.

In the final step of this process, we combined the bounding boxes
output by YOLOv4 and extracted features including polygons of eleva-
tion reductions and headwall lines to remove potential false positives
as many as possible. We selected headwall lines if polygons of elevation
reductions touched or intersected their 20-m buffer zones. We then
compared bounding boxes with selected headwall lines and kept those
bounding boxes if the lines touched or intersected their 10-m buffer
zones. After this, we also manually checked the composite imagery
outlined by the bounding boxes and removed those that did not have
RTS features within the boxes.

3.3. Validating and refining RTSs using crowdsourcing

We developed an online crowdsourcing system that integrates a user
input form, composite imagery, and interactive maps of high-resolution
imagery to validate and refine RTS bounding boxes (Fig. 12). The
system allowed users around the world to validate, and improve the
accuracy, of mapping results obtained using our method (Section 3.2).
After logging in to this system, contributors can use panel (c) as a
main window to check the results and DEM imagery, panel (a)&(b) for
additional high-resolution satellite imagery, and panel (d) to indicate if
the feature was correctly identified as an RTS, by selecting one of the
following options: Yes, No, High Confidence, Medium Confidence, and
Low Confidence.

We used Javascript to develop the frontend, and Django (www.
djangoproject.com, version 4.0.3) for the backend, with PostgreSQL
(www.postgresql.org, version 14.5) as the database. We used the Leaflet
(leafletjs.com, version 1.8.0) for displaying composite imagery, bound-
ing boxes, and tools for drawing as well as editing. Each bounding
box would be validated up to three times by different users. We also
encouraged people to add bounding boxes for false negatives shown in
panel (c). The crowdsourcing system is hosted in the server at the Co-
operative Institute for Research in Environmental Sciences, University
of Colorado Boulder and can be accessed by visiting http://labelearth.
colorado.edu. We shared the crowdsourcing systems through different
channels to encourage participation including department email lists
at CUBoulder, Cryolist, Twitter, and the International Permafrost Asso-
ciation (IPA) RTS InTrain Action Group. Instructions on the use of the
crowdsourcing system and contributions are at https://yghlc.github.io/
validate-thaw-slump/.

We defined a strategy to obtain results that only contain true pos-
itives and the bounding boxes or polygons newly added by volunteers
after crowdsourcing validation. We assigned values: 1.0, 0.75, 0.5,
0.25, and 0 for the mapper confidence: Yes, High, Medium, Low,

https://www.qgis.org
https://github.com/AlexeyAB/darknet/releases/download/darknet_yolo_v3_optimal/yolov4.conv.137
https://github.com/AlexeyAB/darknet/releases/download/darknet_yolo_v3_optimal/yolov4.conv.137
https://github.com/AlexeyAB/darknet/releases/download/darknet_yolo_v3_optimal/yolov4.conv.137
http://www.djangoproject.com
http://www.djangoproject.com
http://www.djangoproject.com
http://www.postgresql.org
https://leafletjs.com
http://labelearth.colorado.edu
http://labelearth.colorado.edu
http://labelearth.colorado.edu
https://yghlc.github.io/validate-thaw-slump/
https://yghlc.github.io/validate-thaw-slump/
https://yghlc.github.io/validate-thaw-slump/
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Fig. 11. Training polygons and composite imagery. (a) shows the overview of composite imagery in the ArcticDEM domain and the distribution of training polygons, red and
yellow polygons are positive and negative training data, respectively. (b) shows an example of composite imagery, the positive training polygon and the bounding box of an RTS
whose location is marked by a blue star in (a). The time period associated with each narrow-steep line is shown in (c). The geometric center of this RTS is 68.138 ◦N, 135.551
◦W. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 12. The main interface of the crowdsourcing system shows imagery from Google satellite imagery (a), ESRI World Imagery Wayback (b), and the composite imagery as well
as the bounding box of a retrogressive thaw slump. Panel (d) is the input form. Tools in Panel (c) allow users to edit a bounding box if it is not accurate or add a bounding box
for a missed RTS.
and No, respectively. For a bounding box generated by YOLOv4, we
calculated its average mapper confidence input from volunteers and
considered it as a true positive if the average mapper confidence greater
309
than or equal to 0.5. We used non-maximum suppression to make
sure only one box or polygon is at the location of an RTS if multiple
volunteers repeatedly added polygons for an RTS missed by YOLOv4.
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Table 1
List of features extracted from ArcticDEM.

Feature Size (GB) Count Type Description

elevation differences 5,888 – raster Pixel-wise elevation differences obtained by comparing the
most recent DEM and oldest one

polygons of elevation reductions 251.4 104,125,249 vector regions of elevation reductions
lines of narrow-steep slopes 1,928 1,929,188,730 vector lines representing narrow and steep slopes
potential RTS headwall lines 38.4 44,048,963 vector lines selected by ripple statistics from narrow-steep slope

lines

composite imagery 5,574 – raster rasterized lines of narrow-steep slopes on hillshade derived
from the most recent DEM.
Fig. 13. The overview (a) of pixel-wise elevation differences in the Arctic, not including the Greenland Ice Sheet, and an enlarged area showing several RTSs (b) in Banks Island,
Canada.
During non-maximum suppression, we assigned higher scores to the
added or modified polygons, which means any YOLOv4 boxes would
be deleted if they overlap user-input polygons.

4. Results

4.1. Features extracted from ArcticDEM

Features derived from the ArcticDEM include pixel-wise elevation
differences, polygons of elevation reductions, lines of narrow-steep
slopes, potential RTS headwall lines, and composite imagery ( Table 1).
Pixel-wise elevation differences (e.g. Figs. 8a and 13) and composite
imagery (e.g. Fig. 11b) are rasters in the GeoTIFF format with a
spatial resolution of 2 m, the same as strip files. Polygons of elevation
reductions (e.g. Fig. 8c) represent regions of elevation reductions with
size in a defined range (see Section 3.1.2) and are in the format of
GeoPackage. Lines of narrow-steep slopes (e.g. Fig. 9f) indicate loca-
tions where slopes are greater than 20◦, such as cliffs, river banks, and
RTS headwall. Those with a temporal pattern similar to the movement
of RTS headwall (e.g. Fig. 10) were selected by using ripple statistics
and considered as the lines of potential RTS headwall (Section 3.1.4).
These features were extracted from the ArcticDEM for identifying RTSs
but some of them, especially elevation differences, can be used for other
research. As shown in Fig. 13, elevation differences in most regions
in the Arctic are near zero, which is reasonable as most regions were
not experiencing changes, while the spots with significant elevation
changes are localized and need further investigation.

4.2. The bounding boxes output by YOLOv4

A total of 513,295 bounding boxes were directly output by YOLOv4,
and 15,290 ones remained after combining polygons of elevation reduc-
tions and potential headwall lines ( Table 2). After manual inspection,
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Table 2
The count of bounding boxes in different steps.

YOLOv4 Combining extracted features Manual selection

count 513,295 15,290 3,176

3176 bounding boxes were kept as inputs for the crowdsourcing system.
Comparing the 563 polygons of RTSs in training data (Section 3.2) with
the 513,295 bounding boxes, 527 (93.6%) correctly identified and 36
(6.4%) of them were missed by the trained YOLOv4, indicating a good
training accuracy but no guarantee of a good transferability. Filtering
by extracted features and manual inspection only kept 123 (23.3%)
of the 527, suggesting a discrepancy between extracted features and
the features automatically learned during the training of YOLOv4.
The extracted features successfully reduce the number of bounding
boxes to a manageable level (i.e. 15,290) but have a cost of removing
some true positives whose characteristics do not match these features.
This is a trade-off between feasibility and the comprehensiveness of
an RTS inventory in the entire ArcticDEM domain and requires an
improvement of extracted features in the future (Section 5.5).

The trained YOLOv4 identified some RTSs (true positives) and other
land covers (false positives) as exampled by Fig. 14. The bounding
boxes in Fig. 14 tilt due to the difference of map projections be-
tween data processing (EPSG:3413) and the crowdsourcing system
(EPSG:3857). RTSs can be easily observed from composite imagery
(Figs. 14 a and b) and satellite imagery (Figs. 14 e and f). The composite
imagery also shows the movement of RTS headwall. For example,
Fig. 14a shows the positions of the entire or parts of headwall in
2012 (Cyan), 2013 (Magenta), 2015 (Olive), 2016 (Green), and 2017
(Purple). False positives can be caused by many land cover types such
as forest (Figs. 14 c and g) and surface water (Figs. 14 d and h).
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Fig. 14. Examples of bounding boxes (red polygons) output by YOLOv4 and the
corresponding composite imagery and satellite imagery shown in online maps. (a)–(d)
are the composite imagery, and (e)–(h) are the corresponding satellite imagery. These
are screenshots from the crowdsourcing system and do not have scale bars. The sizes of
bounding boxes from (a) to (d) are 122 m × 136 m, 250 m × 350 m, 122 m × 162 m,
and 128 m × 148 m, respectively. Their geographic centers are (79.440 ◦N, 86.790
◦W), (67.520 ◦N, 131.102 ◦W), (66.274 ◦N, 97.293 ◦E), and (67.279 ◦N, 133.125 ◦W),
respectively. The bi-directional arrow in (f) indicates the difference of headwall position
between the composite and satellite imagery due to the differences in their acquisition
times. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

Table 3
Statistics of validation times to the bounding boxes.

Validation times 0 1 2 3

count of bounding boxes 0 3070 65 41

4.3. Responses to the crowdsourcing system

Two months after setting up the crowdsourcing system and adver-
tisement, all the bounding boxes (Table 2) had been validated at least
once by the authors team and volunteers (Table 3). The author team
contributed most (>90%) of the validation. A total of 38 volunteers
logged in to the crowdsourcing system, and 24 of them validated the
bounding boxes. The system also received comments for bounding
boxes from the volunteers, and some comments describe the cause of
the false positives. For instance, (1) ‘‘snow drift in themokarst gully?’’,
(2) ‘‘icesheet’’, (3) ‘‘just a steep Bluff’’, (4)‘‘deep valley, bad imagery’’,
(5)‘‘Gully, might be an old inactive RTS’’, (6) ‘‘dendritic watershed
systems’’, and (7) ‘‘poor satellite imagery quality but most likely not an
RTS’’. These comments provide background knowledge and are helpful
for the improvement of future mapping efforts.

Among the 3176 bounding boxes (Section 4.2), 647, 387, 991 of
them have mapper confidence greater than or equal to 0.75, 0.5, 0.25,
respectively (Table 4). 35.3% of the bounding boxes did not locate
RTSs but some other land cover or landforms. Those bounding boxes
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Table 4
The statistics of the RTS mapper confidence from the crowdsourcing system.

Avg mapper
confidence

0 (0, 0.25) [0.25, 0.5) [0.5, 0.75) [0.75, 1] Total

count 1123 28 991 387 647 3176
percent 35.3% 0.9% 31.2% 12.2% 20.4% 100.0%

with low mapper confidence (<0.5) need additional imagery or ground
knowledge for validation. A total of 2248 polygons were added to the
system when volunteers found RTSs missed by YOLOv4 or modified
inaccurate bounding boxes; 771 of the 2248 polygons overlap the
original bounding boxes because (1) the system created a new polygon
when volunteers modified the original box and (2) volunteers may
repeatedly add polygons for missed RTSs because the system only
shows the composite imagery and one bounding box in the center.

4.4. Identified RTSs after crowdsourcing

A total of 2494 RTSs were identified from the ArcticDEM across
the Arctic after crowdsourcing validation, among them, 305 and 367
ones with mapper confidence greater than or equal to 0.75 and 0.5,
respectively, after the non-maximum suppression. The remaining 1822
were added or modified from the original YOLOv4 boxes by volunteers
during validation. Most RTSs are in the continuous permafrost zone and
a few of them are in the discontinuous zone (Fig. 15a). These RTSs
spread out across the Arctic but tend to cluster in some locations, as
shown in the 100 km × 100 km grid map (Fig. 15b). There is also a
cluster of RTSs in Northeast Greenland (Fig. 17), where permafrost and
its thaw has not been adequately investigated and only a few RTSs were
reported (Cable et al., 2018; Pastor et al., 2021), although the size and
number of RTS in this cluster are not comparable to those in Canada
and Siberia. The width and length (𝑙𝑒𝑛𝑔𝑡ℎ ≥ 𝑤𝑖𝑑𝑡ℎ) of RTS bounding
boxes ranges from 16.3 m to 885.8 m and 19.2 m to 1317.9 m, with
mean values of 133 m and 181.5 m, respectively (Fig. 16), indicating
the advantage of very high resolution data for identifying relatively
small RTSs.

5. Discussion

5.1. RTSs identified from ArcticDEM

Our workflow using the ArcticDEM identified many RTSs in the
Arctic and provided an important dataset for future studies. To the
best of our knowledge, this is the first time that very high resolution
(<5 m) remote sensing data has been used to map RTSs at a pan-
Arctic scale. There are several lessons learned from this process that
are relevant to similar studies or research that involves processing of
large earth observation datasets. The bounding boxes of RTSs enrich the
dataset of known RTSs in the Arctic and can be part of the training data
for future mapping and monitoring of RTSs because the first problem
for monitoring RTSs and assessing their environmental impacts at the
pan-Arctic scale is the locations of all RTSs. Our results also reveal
several clusters of RTSs, such as the one in Greenland (Section 4.4).
The locations of those clusters in Canadian and Russian Arctic match
previous studies (Lewkowicz and Way, 2019; Huang et al., 2022;
Bernhard et al., 2022b). The mapper confidence (Section 4.3) for each
RTS represent uncertainties associated with remote sensing data used
during identification and validation. Researchers should be cautious
when they include those RTSs with low mapper confidence into their
studies.

Our results do not represent a comprehensive inventory of RTSs in
the Arctic because many RTSs were missed due to the limitations re-
lated to the ArcticDEM and our method (see Section 5.5). For example,
in sub-regions of Alaska where Nitze et al. (2018) and Swanson (2021)
identified a few hundred RTSs, our workflow only identified 23 RTSs
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Fig. 15. The distribution (a) of the RTSs identified in the Arctic and their number (b) in 100 km × 100 km grids.
Fig. 16. The histogram and statistics (minimum, maximum, and mean values) of the width (a) and length (b) of the bounding boxes of identified RTSs.
in Alaska. Runge et al. (2022) applied an automated detection method
to satellite imagery in North Siberia and identified 50,895 potential
RTSs, which is well beyond the number of RTSs found in this study.
Because of missed RTSs in the results, we did not conduct analysis
of the spatial distribution or controlling factors, to avoid misleading
conclusions. RTSs are small and dynamic features and compiling an
complete inventory remains a significant challenge that requires effort
from permafrost and remote sensing communities. Despite the fact that
our workflow only identified a fraction of the RTS in the study domain,
our experience offers several insights relevant to future efforts to map
thermokarst features across the circumpolar north.

5.2. The advantages of ArcticDEM and the challenges to processing it

The ArcticDEM is a high resolution, multi-temporal, and open-
access DEM covering the Arctic and is a fundamental dataset for many
research in the Arctic. The spatial resolution of 2 m provides details
on the topography such as buildings, landslides, and microtopography.
Multi-temporal observations using the ArcticDEM enable the detection
of changes on topography over time. The open-access policy facilitates
many studies that might not happen if payment or permission was
required for accessing the ArcticDEM.
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The extracted features (Section 4.1) derived from the ArcticDEM in
this study also can be used in other research or future work to identify
permafrost landscape change. The pixel-wise elevation differences with
a resolution of 2 m can be used to explore surface elevation change.
Lines of narrow-steep slopes represent the locations of abrupt slope
changes on topography such as river banks and cliffs. Composite im-
agery (Section 3.1.5) can provide useful or supplement information on
topography when satellite imagery is not available at certain locations
and times.

Since the ArcticDEM is derived from optical imagery, it presents sev-
eral limitations and challenges when using it to investigate details on
topography. Optical sensors can be affected by atmospheric conditions
such as cloud and haze, and cannot penetrate vegetation canopy that
covers the Earth’s surface. Therefore, the ArcticDEM contains regions
with invalid data and does not represent the height of bare-Earth, but
that of anything on the Earth’s surface. Changes in vegetation and snow
over time also create noise and uncertainties, which complicate detect-
ing changes in topography. The algorithm (i.e. SETSM) for producing
ArcticDEM also has problems over surface water and tends to produce
invalid or incorrect DEM values, also causing challenges. The size of
ArcticDEM is also a challenge because most researchers do not have
the IT facility to host and process it.
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Fig. 17. RTS examples in Northeast Greenland. (a)–(c) are hillshades derived from ArcticDEM of 2009, 2012, and 2017, respectively, and show the expansion of an RTS headwall
(pointed by red arrows), which passed the latitude-longitude grid line (black). (d)–(f) are Sentinel-2 images from 2016 to 2022 and show the expansion of a few RTSs. The RTS
(red arrow) in the upper region of (d)–(f) emerged after 2012 and is not shown in (a) and (b). (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
5.3. The necessity of combining deep learning and extracted features

Combining deep learning and extracted features is required when
limited training data is available for large regions. The main advan-
tage of deep learning is the automated feature engineering (LeCun
et al., 2015), allowing people to handle computer vision tasks without
skills and domain knowledge for designing feature extractors. Some-
times, deep learning can automatically learn better features from data
than human classifiers, but may have a problem of overfitting or low
generalization. In this study, the trained YOLOv4 identified 524,240
bounding boxes (Section 4.2), which is beyond a manageable level for
manual inspection and crowdsourcing validation. The huge number of
bounding boxes indicates a potential problem of generalization in the
trained model. Two months after the crowdsourcing system was set
up, responses from volunteers or the permafrost community were very
limited (see Section 4.3). Therefore, manual validation of the 524,240
bounding boxes is infeasible. Extracted features including polygons of
elevation reductions and RTS headwall lines can also be used to identify
RTS, but these approaches also result too many features to feasibly
validate. For example, if combining polygons of elevation reductions
and RTS headwall lines using the approach in Section 3.2, we obtained
8,316,110 lines, far beyond a manageable level.

5.4. Addressing the computational challenges for large scale of ArcticDEM

Many technical problems caused by limited computing resources
and heterogeneity in the large scale data were encountered when
extending our algorithms from local regions to the entire ArcticDEM
domain. The first technical challenge was the lack of disk space to
store the ArcticDEM (∼200 TB) and intermediate data as well as final
results. We had access to a supercomputer for this project, but the
quota of storage was limited. We tried three solutions including (1)
trying to use the supercomputer producing the ArcticDEM, but we
did not obtain the corresponding permission; (2) using Google Earth
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Engine, but we found some algorithms we needed were not available
on that platform; (3) developing a pipeline that only downloaded a
portion of the ArcticDEM to CUBoulder, then immediately removed
it after processing. Re-locating the 200 TB ArcticDEM from PGC to
our workstations was time-consuming but feasible, thanks to the high-
speed internet on campus. The second challenge was caused by the
heterogeneity of ArcticDEM in the Arctic, which resulted in many failed
jobs and instability of the pipeline. Different grids required different
computing time and CPU memory, which often exceeded pre-allocated
resources requested from the supercomputer and lead to job failure.
To reduce the queue time of a computing job, we tried to request
the minimum resources required for each job. For the failed jobs on
supercomputer, we set up a monitoring program to identify them and
then re-run them on the workstations, that had enough CPU memory
and could allow a job to run for a long time. At the early stage
of running the pipeline, it stopped working quite often because of
unexpected situations in new grids. We had to investigate the problems
and added python scripts to overcome the new problems. In the later
stages of data processing the pipeline was quite stable.

Some technical challenges related to efficiency, crucial for process-
ing big data, were also resolved during the processing and development
of the pipeline. For example, (1) Using ‘‘gdal_polygonize.py’’ (available
in GDAL) to convert segmented results from rasters to polygons (Sec-
tion 3.1.2), took more than 10 h or even a few days if there are a lot
of segmented regions with complex shapes. Luckily, in the new version
(3.4.2) of GDAL released in 2022, the algorithm for polygonization has
been optimized. As a result, upgrading GDAL to the newest version
likely will significantly improve the efficiency of producing polygons of
elevation reductions. (2) Writing a vector file to disk using GeoPandas
is time-consuming if the file is large; so we kept vector data in CPU
memory as much as possible and avoid I/O operations. (3) The step
to find adjacent polygons (Section 3.1.2) is also time-consuming, and
we adopted a method to ‘‘rasterize polygons then polygonize it’’ to
automatically merge polygons connected each other. (4) Obtaining the
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areas of regions after segmentation using polygonizing also is time-
consuming; we used the ‘‘regionprops’’ function in the measure model
of scikit-image to get properties of segmented regions, which is much
more efficient. To fully utilize computing resources, we implemented
all the algorithms for feature extraction in parallel.

5.5. Limitation and future work

The main limitation of this study is that the final result misses many
RTSs and contains false positives. We attribute these errors to four main
causes. (1) For some locations or regions, the ArcticDEM does not have
enough observations to capture the retreating behavior of an RTS; (2)
the parameters for extracting features were chosen during experiments
in western Canadian regions and may not fit to the characteristics
of all RTSs in the entire ArcticDEM domain, especially those in the
Russian Arctic; (3) YOLOv4 was trained with limited training data,
which likely resulted in some false negatives and false positives; (4)
available computing resources were not sufficient to conduct various
experiments with different combinations of parameters and deep learn-
ing architectures. The method only identified rapidly expanding RTSs
during observation periods and tended to ignore those relatively stable
or expanded a little bit. Improvements in the future should focus on
building a more accurate and efficient deep learning model to locate
RTSs by adding more training data or choosing a better architecture.
Feature extraction is not needed if a deep learning model can achieve a
high mapping accuracy. Alternatively, future work can focus on select
regions across the Arctic then fine-tune the parameters for manual-
feature engineering (feature extraction) and find the best parameters
for representing characteristics of all potential RTSs.

The percentage of false positives is still high after combining ex-
tracted features and YOLOv4 outputs. Despite the fact that we used
a global surface water dataset as mask, many false positives occurred
over surface water. This suggests that future inventories could be
improved by using a higher resolution and more accurate surface water
product. Hopefully, a new version of ArcticDEM released in the future
will contain an accurate water mask derived from the same optical
imagery. The ArcticDEM represents the height of everything including
vegetation and snow on the Earth’s surface (Section 5.2), which also
leads to many false positives.

Validation through the crowdsourcing needed more participants
because we only received a limited number of responses from the
broader community. Possibly, RTSs are a very specific topic, and not
many people are interested in or familiar with the topic. In the future
we will consider working with instructors who teach courses related
to permafrost, remote sensing, or nature hazards and inviting students
in their classes as parts of exercise. The system also received some
unexpected responses including invalid email addresses and unreliable
validation. For example, some people logged in the system using email
addresses such as ‘‘test@test.com’’ and ‘‘test@gmail.com’’, which are
invalid after checking. A volunteer validated 14 bounding boxes on 3rd
October 2022 by inputting ‘‘Yes’’ as the mapper confidence to all of
them, which is unlikely based on the percentage of false positives in the
results. The authors checked these 14 inputs and assessed them as unre-
liable prior to removing them from the database. This indicates that our
strategy of validating a bounding box multiple times by different users
is necessary. Some people just want to log in the crowdsourcing system
and check the functions and capabilities of the system. The system
does not require registration for convenience but also allows invalid
email addresses. We worried that the crowdsourcing server might not
able to handle large numbers of concurrent users, but this concern was
unwarranted. Users could choose among five options: Yes, No, High
Confidence, Medium Confidence, and Low Confidence (Section 3.3),
but ‘‘High’’, ‘‘Medium’’, and ‘‘Low’’ are ambiguous. We may consider
only using three options: Yes, No, Unknown for validation in the future.

High-resolution satellite imagery from PlanetScope or Worldview-
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1, 2, 3, and GeoEye-1 satellites are better datasets for mapping RTSs
(Witharana et al., 2022) in the Arctic and should be considered in the
future work. These commercial satellites are too expensive for many
users, but some researchers may have access to the imagery through a
few channels without paying the cost if they meet certain requirements
regarding funding agencies and citizenship, etc.

6. Conclusions

We applied feature extraction and deep learning to the ArcticDEM
and identified 2494 retrogressive thaw slumps (RTSs) in the Arctic.
We set up an online crowdsourcing system that integrated interactive
maps of satellite imagery, a window showing composite imagery, and
a form to validate the results and recruited volunteers from different
channels. The key techniques in the data processing included an auto-
mated pipeline, feature extraction, and an object detection algorithm
(i.e. YOLOv4). The pipeline also produced intermediate data such as
pixel-wise elevation differences, polygons of elevation reductions, lines
of narrow-steep slopes, and RTS headwall lines, and these data are
potentially useful for other research such as glacier mass balance.
The results show that (1) in the scenario where training data are
insufficient, the combination of extracted features and deep learning
can generate mapping results at a manageable level; (2) the method is
efficient and can potentially handle a large dataset and identify RTSs in
the Arctic, although the analysis does produce false negatives; (3) the
crowdsourcing system is a useful tool and allows for a joint effort from
scientific communities but additional outreach and training are needed
for identifying RTS; (4) we may identify areas of previously unknown
permafrost thaw such as the one in Greenland, indicating the usefulness
of our method for monitoring permafrost.
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